UTHealth Houston

Comparative Analysis of Shallow and
Deep Learning Methods for Diabetes
Prediction Using the Pima Indians

Puyang Zhaot

Dataset
Zhiyi Yue!

Md Saifur Rahman?

it U T Health Houston
School of Public Health

Biostatistics and Data Science

'Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston
Email: Puyang.Zhao@uth.tmc.edu;Zhiyi.Yue@uth.tmc.edu;MdsaifurRahman@uth.tmc.edu

Abstract

Methodology: Shallow Machine Learning

Key Findings on Diabetes Prediction using Pima Indians
Dataset:

= Compared various Shallow ML (LR, RF, SVM, etc.) and Deep
Learning (MLP, DNN, CNN, LSTM) models.

= Fvaluated performance using 10-fold cross-validation and an
independent test set (Accuracy, AUC, etc.).

= All models provided robust predictions.

= Deep Learning models, especially CNN (AUC 0.8767),
showed marginal AUC improvements over the best Shallow
ML model (LR, AUC 0.8686).

= Performance differences were small, indicating competitive
results from well-tuned shallow models.

= Model selection should balance predictive power,
interpretability, and efficiency based on clinical needs.

Introduction

Five traditional models were implemented and evaluated:

= Logistic Regression (LR)

= Random Forest (RF)

= Gradient Boosting Machine (GBM)

= Support Vector Machine (SVM) with RBF kernel
= k-Nearest Neighbors (kNN)

Key hyperparameters were tuned (e.g., LR: max_iter=1000;
RF/GBM: n_estimators=100; kNN: n_neighbors=5).

Methodology: Deep Learning Architectures

Diabetes is a significant and growing public
health issue in the United States [1]. Early
detection through accurate predictive mod-
els is crucial for timely intervention and ef-
fective disease management. This study
presents a comparative analysis of shallow
machine learning (ML) and deep learning
(DL) techniques for diabetes risk prediction
using the Pima Indians Diabetes Dataset.

Key Contributions:

= Develop predictive models to enhance early diabetes
detection.

= |[ntegrate and validate both traditional shallow ML models
and advanced DL architectures.

= Promote reproducibility by providing a comprehensive
account of methods and parameters.

Dataset & Preprocessing

Dataset: Pima Indians Diabetes Dataset [2] (768 records).

BMI, Diabetes Pedigree Function, Age.
Outcome: Binary (1 for diabetic, O for non-diabetic).

Preprocessing Highlights:

= Clinically implausible zero values (e.g., in Glucose, BMI)
treated as missing.

= Missing values imputed using k-Nearest Neighbors (kNN,
kE=25).

= Features standardized using Z-score normalization:

__ X~ Htrain
Lscaled = 5.~

= Data split (stratified): Training (70%, 429 samples), Validation
(15%, 108 samples), Test (15%, 231 samples).
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Figure 1. Feature importance scores (Random Forest).

~eatures: Pregnancies, Glucose, Blood Pressure, Skin Thickness,

A range of DL models were developed using Keras/TensorFlow:

= Multilayer Perceptrons (MLP): Basic, with Dropout (20-50%),
with Batch Normalization.

= Deep MLP: Deeper architecture (e.g., Dense(32)-Dense(16)).

= Deep Neural Network (DNN): e.g.,
Dense(64)-Dropout(0.2)-Dense(32)-Dropout(0.2).

= Convolutional Neural Network (CNN): e.g.,
Conv1D(32)-MaxPool-Conv1D(64)-Dense(16).

= |[STM and LSTM with Attention.

All DL models used Adam optimizer (Ir=0.001), categorical cross-
entropy loss, and early stopping based on validation loss.

Results: CNN Model Training

The CNN model, which achieved the highest AUC, demon-
strated stable training.
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Figure 2. Training and validation loss/accuracy for the CNN model. Early
stopping mitigated overfitting.

Stable training with minimal overfitting was observed. Early
convergence and consistent validation loss confirm the CNN
model’s strong generalization performance.

Results: Shallow vs. Deep Learning

Shallow ML (Test Set): Logistic Regression achieved the highest
AUC and overall balanced performance. Tree-based methods
also performed competitively but showed slightly lower preci-
sion.
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Figure 3. Shallow ML Performance.

Deep Learning (Test Set): CNN achieved the highest AUC;
basic MLP had highest accuracy.
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Figure 4. Deep Learning Performance.

Model Evaluation

= Rigorous evaluation via 10-fold cross-validation on the
training set.

= Final performance assessed on an independent test set.

= Metrics: Accuracy, Precision, Recall, F1-Score, Area Under
the Curve (AUC).

Comparative Analysis Summary

= Both shallow ML and DL models vyielded robust predictions.

= DL models, particularly CNN (AUC 0.8767), achieved
marginal AUC improvements over the best shallow model,
Logistic Regression (AUC 0.8686).

= The basic MLP showed the highest accuracy (0.8103).

= The performance gap is narrow, highlighting the
competitiveness of well-tuned shallow models.

= Shallow models offer better interpretability and
computational efficiency.

= Deep models excel at capturing complex non-linear
Interactions.

Conclusion and Future Work

Shallow and deep learning methods are effective for diabetes
prediction. While DL models like CNN can offer a slight perfor-
mance edge in capturing complex data patterns, simpler mod-
els like Logistic Regression remain highly competitive and inter-
pretable. Model selection should balance predictive power with
clinical utility, interpretability, and resource constraints.

Future Work:

= Develop hybrid models combining shallow model
transparency with DL representation power.

= Expand datasets to include more diverse populations for
improved generalizability.

= [ncorporate explainability techniques (e.g., SHAP values,
attention mechanisms) to enhance clinical trust and insight.

= Further refine feature engineering and hyperparameter
optimization strategies.
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