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A B S T R A C T

Speech emotion recognition (SER) plays a pivotal role in enhancing Human-computer interaction (HCI) systems.
This paper introduces a groundbreaking Capsule-enhanced neural network (CENN) that significantly advances
the state of SER through a robust and reproducible deep learning framework. The CENN architecture seamlessly
integrates advanced components, including Multi-head attention (MHA), residual module, and capsule module,
which collectively enhance the model’s capacity to capture both global and local features essential for precise
emotion classification. A key contribution of this work is the development of a comprehensive reproducibility
framework, featuring novel metrics: General learning reproducibility (GLR) and Correct learning reproducibility
(CLR). These metrics, alongside their fractional and perfect variants, offer a multi-dimensional evaluation of the
model’s consistency and correctness across multiple executions, thereby ensuring the reliability and credibility of
the results. To tackle the persistent challenge of overfitting in deep learning models, we propose an innovative
overfitting metric that considers the intricate relationship between training and testing errors, model complexity,
and data complexity. This metric, in conjunction with the newly introduced generalization and robustness
metrics, provides a holistic assessment of the model’s performance, guiding the application of regularization
techniques to maintain generalizability and resilience. Extensive experiments conducted on benchmark SER
datasets demonstrate that the CENN model not only surpasses existing approaches in terms of accuracy but also
sets a new benchmark in reproducibility. This work establishes a new paradigm for deep learning model
development in SER, underscoring the vital importance of reproducibility and offering a rigorous framework for
future research.

1. Introduction

Speech emotion recognition (SER) is a pivotal area of research
focused on accurately identifying emotional states conveyed through
speech, which is essential for a variety of applications such as Human-
computer interaction (HCI), mental health monitoring, and online
public opinion analysis [1]. The precision of emotion recognition is
crucial in these contexts, as it directly impacts the effectiveness and user
experience of the systems involved [2].

SER involves the extraction of features from spoken utterances to
capture the emotional nuances expressed by the speaker [3]. These
features can be broadly categorized into rhythmic prosody

elements—such as pitch, rhythm, and intonation—and spectral char-
acteristics like energy distribution and formant frequencies [4]. Key
attributes, including pitch, energy, and speech rate, provide invaluable
insights for identifying distinct emotions in speech [5].

Typically, SER features are divided into three categories: Low-level
descriptors (LLDs) [6], High-level statistical functions (HSFs) [7], and
deep learning-derived features [8]. LLDs, particularly those derived
from Mel-frequency cepstral coefficients (MFCCs) and energy, effec-
tively capture nuanced emotional content. For instance, Leem et al.
demonstrated the robustness of LLD subsets in noisy conditions [10],
while Lan et al. proposed an LLD-based DBLSTM approach that in-
corporates contextual information, outperforming spectral features [9].
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Vu et al. explored lightweight SER models, emphasizing music-related
features for enhanced accuracy, efficiency, and generalizability [10].

HSFs, derived from statistical computations on LLDs, encapsulate
metrics like standard deviation, skewness, and kurtosis, commonly used
in SER. Zheng et al. utilized a combination of LLDs and HSFs to extract
emotion-related features from speech, enhancing emotion recognition in
children’s reading speech [11]. Ananthakrishnan et al. proposed a novel
model-based feature set that improved discrimination between emotion
classes by relaxing modeling assumptions, leading to significant im-
provements [12]. Ntalampiras et al. integrated LLDs for emotion
recognition, employing methods like short-term statistics, spectral mo-
ments, autoregressive models, and wavelet decomposition, highlighting
the effectiveness of multiresolution analysis and feature merging for
enhanced classification [13].

Deep learning features, autonomously extracted by Deep neural
networks (DNNs), capture a wide range of latent features in speech
signals. Gao et al. proposed an efficient domain adversarial training
method, combining domain-adversarial and center loss to address
feature distribution divergence and intra-class variation [14]. Li et al.
proposed multi-source discriminant subspace alignment for
cross-domain SER, leveraging Linear discriminant analysis (LDA) in a
multi-source domain to enhance model robustness, outperforming
state-of-the-art transfer learning algorithms [15]. Wu et al. presented a
two-stage fuzzy fusion-based CNN for dynamic emotion recognition,
integrating facial expression and speech modalities, achieving superior
results while effectively managing imbalanced modality contributions
[16].

Recent research highlights significant advancements in optimizing
system performance and accuracy through sophisticated methodologies.
For instance, Cao et al. explored the input-to-state stability of stochastic
Markovian jump genetic regulatory networks with time-varying delays,
deriving new stability conditions via Lyapunov methods and validating
them [17]. Radhika et al. extend this concept to stochastic Cohen–-
Grossberg BAM neural networks, focusing on stability with time-varying
delays and confirming their findings numerically [18].

In the realm of optimization, Tran et al. introduced a BCMO-ANN
algorithm for vibration and buckling optimization in functionally
graded porous microplates, combining higher-order shear deformation
and modified couple stress theories to effectively analyze material
property effects [19]. Meanwhile, Ping et al. presented a hierarchical
Bayesian framework for identifying non-Gaussian processes, leveraging
improved orthogonal series expansion and polynomial chaos expansion
to handle dimensionality and uncertainty, validated through simula-
tions [20]. Dang et al. calibrated 2D VARANS-VOF models of wave in-
teractions using gradient boosting decision trees, achieving high
prediction accuracy and minimal error [21]. Nguyen et al. proposed a
damage detection method for slab structures using 2D curvature mode
shapes and Faster R-CNN, demonstrating robust classification and
bounding box predictions [22]. Wang et al. developed a deep
learning-based method for rail profile measurement using structured
light, integrating deep learning with template-matching algorithms to
enhance tracking accuracy for dynamic profiles [23]. Thendral et al.
improved image encryption techniques by analyzing the synchroniza-
tion of Markovian jump neural networks with additive delays,
enhancing control performance and encryption effectiveness [24].

SER has seen considerable advancements, yet challenges such as
overfitting and limited interpretability persist [25]. Recent approaches
have employed Transformer architectures to address these issues,
leveraging their capacity to model complex relationships in acoustic
data. For instance, Wang et al. introduced the Swin-Transformer, which
captures multi-scale emotional features through a patch-based approach
[26]. Liu et al. developed Dual-TBNet, combining self-supervised
learning with neural network modules to enhance feature fusion and
mitigate overfitting [27]. Wagner et al. explored Transformer-based
models like wav2vec 2.0 and HuBERT, demonstrating robust perfor-
mance in valence prediction [28].

However, these advancements have not fully resolved issues related
to robustness, generalization, and reproducibility, particularly in
maintaining consistent performance across varied datasets and model
executions. To address these challenges, we introduce the Capsule-
enhanced neural network (CENN). This novel architecture integrates
advanced deep learning techniques, including a reproducibility frame-
work with General learning reproducibility (GLR) and Correct learning
reproducibility (CLR), to ensure reliable and consistent performance.
Additionally, our work introduces an innovative overfitting metric that
assesses the interplay between training/testing errors, model
complexity, and data complexity, alongside generalization and robust-
ness metrics. By tackling these critical issues, our work advances SER
and establishes new benchmarks for model performance and reproduc-
ibility. Our contributions are threefold:

(1) We introduce the CENN, which integrates MHA, residual module,
and capsule module to improve the capture of both global and
local features for accurate emotion classification in SER systems.

(2) We present a novel reproducibility framework with metrics like
GLR and CLR, along with fractional and perfect variants, to
evaluate and ensure the model’s consistency and accuracy across
multiple runs.

(3) We propose a new overfitting metric that addresses the rela-
tionship between training/testing errors, model complexity, and
data complexity, complemented by generalization and robustness
metrics, to provide a holistic assessment of the model’s perfor-
mance and guide effective regularization strategies.

The paper is structured as follows: Section 2 introduces the innova-
tive CENNmodel. Section 3 presents innovative metrics in deep learning
models. Section 4 details the datasets and extracted features. Section 5
presents the experimental results. Section 6 offers a discussion of the
findings, while Section 7 concludes with an evaluation of the method’s
strengths and weaknesses, as well as ongoing and future work.

2. The Capsule-enhanced neural network

In this paper, we introduce a novel Capsule-enhanced neural
network (CENN), meticulously designed to achieve robust and precise
data classification. The architecture of the CENN, as depicted in Fig. 1,
integrates several advanced deep learning modules, including a feature
mapping module composed of dense blocks, a Multi-head attention
(MHA) module [30], a residual (ResNet) module [31], and a capsule
module [32]. This combination empowers the model to adeptly capture
both global and local patterns within the data, rendering it highly
adaptable to various input types and classification tasks. The CENN
model represents a flexible and powerful framework that leverages the
strengths of state-of-the-art deep learning techniques, making it suitable
for tasks that demand nuanced data analysis across diverse domains.

The feature extraction module is fundamental to the CENN’s
ability to distill essential information from the input data. This module
generates 107-dimensional low-level features, encapsulating critical
aspects of the input, which are then processed by the feature mapping
module. Within the feature mapping module, each dense block is
structured to sequentially process the input features through a dense
layer followed by Batch normalization (BN) [29], LeakyReLU activation
[17][5], and dropout regularization [10]. This architecture stabilizes
the learning process and improves convergence by addressing issues like
vanishing gradients and overfitting issues. The sequential processing
through dense layers enhances feature richness and diversity, crucial for
capturing nuanced patterns in the data.

The Multi-head attention (MHA) module enhances the model’s
ability to capture relevant features across the entire input space by
applying multiple attention heads simultaneously. Each attention head
computes queries (Q), keys (K), and values (V), enabling the model to
dynamically weigh the importance of various features. This mechanism
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is crucial for understanding complex dependencies within the data, as it
allows the model to focus on different aspects of the input during the
learning process. The theoretical foundation of attention mechanisms is
rooted in the Transformer architecture, which has demonstrated supe-
rior performance in various natural language processing tasks [30], and
its application in CENN extends these benefits to other domains
requiring intricate feature extraction.

The ResNet module is incorporated to capture local patterns and
hierarchies within the data through residual connections. These con-
nections are vital for addressing the vanishing gradient problem, which
often hampers the training of deep networks [31]. By preserving the
flow of gradients through skip connections, the ResNet module enables
the construction of deeper architectures, allowing the model to learn
more abstract representations of the input data. This capability is
particularly important in tasks where the recognition of fine-grained
details can significantly impact classification accuracy.

The Capsule module introduces a novel approach to encoding
spatial relationships and hierarchies within the data. Unlike traditional
neurons, capsules are designed to capture the orientation and relative
spatial positioning of features within the input [32]. The transformation
of input features into primary capsules, each representing distinct
properties, allows the model to learn and represent complex spatial hi-
erarchies more effectively [33]. This enhanced representation provides
the CENN model with a significant advantage in understanding intricate
relationships within the data, enabling more accurate and detailed
classification.

Finally, the classification layer leverages the processed feature
representations to assign probabilities to various classes, such as Anger,
Happiness, and Neutral, through a softmax function. This output layer
translates the learned representations into actionable insights, making it
suitable for applications requiring precise categorization of input data.

3. Innovative metrics in deep learning models

3.1. Reproducibility

Reproducibility is a cornerstone of scientific research, particularly in
deep learning, where models are often sensitive to initial conditions,
stochastic processes, and data variability [34]. In this work, we define
reproducibility as the model’s ability to consistently generate the same
results across multiple executions using identical training and testing
datasets. Ensuring reproducibility is crucial for validating a model’s
reliability and robustness, thereby confirming its applicability in
real-world scenarios.

We propose a structured framework to evaluate the reproducibility
of our CENNmodel. This framework categorizes reproducibility into two
primary dimensions: general learning reproducibility and correct
learning reproducibility, each further subdivided to capture varying
degrees of reproducibility.

General learning reproducibility (GLR) assesses the model’s abil-
ity to generate consistent predictions across multiple executions, which
is crucial for evaluating the stability of the model’s performance. GLR is
computed as follows:

GLR =
1
N
∑N

i=1

1
R
∑R

r=1
I
(

Counti,r ≥
R
2

)

(1)

whereN is the total number of samples, R is the number of testing rounds
conducted for each sample, and Counti,r denotes the count of consistent
predictions for sampleiduring the rthtesting round. The I(⋅)is the indi-
cator function, which equals 1 if the condition inside is true and
0 otherwise. It calculates the average number of samples that have
consistent predictions at least half the time across multiple testing
rounds.

Fractional learning reproducibility (FLR), a specific measure
under GLR, focuses on the model’s ability to generate consistent results

Fig. 1. Architecture of the proposed Capsule-enhanced neural network (CENN) model. The model integrates several distinct modules: an input layer for initial data
processing, a feature mapping module for encoding features, a multi-head attention module for selective focus on data segments, a ResNet module for capturing local
patterns and hierarchies, a capsule module for learning complex spatial relationships, and a classification layer for final output determination.
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in most but not all testing rounds:

FLR = 1
N
∑N

i=1
1
R
∑R

r=1I
(
R
2 ≤ Counti,r < R

)

(2)

Perfect learning reproducibility (PLR) assesses whether the model
produces identical results across all testing rounds, indicating maximum
consistency:

PLR =
1
N
∑N

i=1
I(Counti=R) (3)

Correct learning reproducibility (CLR) focuses on the model’s
ability to not only be consistent but also correct, i.e., the predicted label
ŷi,rmatches the true label yiacross multiple rounds. CLR measures the
proportion of samples for which the model consistently predicts the
correct label at least half the time across multiple testing rounds:

CLR =
1
N
∑N

i=1

1
R
∑R

r=1
I
(

Counti,r ≥
R
2

∧ ∀r, ŷi,r = yi
)

(4)

where ŷi,r is the predicted label for sample i in round r. yi is the true label
for sample i.

Fractional correct learning reproducibility (FCLR) measures the
model’s ability to consistently produce correct results more than half the
time but not always. It is expressed as:

FCLR =
1
N
∑N

i=1

1
R
∑R

r=1
I
(
R
2
≤ Counti,r <R ∧ ∀r, ŷi,r = yi

)

(5)

Perfect correct learning reproducibility (PCLR) evaluates whether
the model can consistently produce correct predictions across all rounds.
This can be mathematically expressed as:

PCLR =
1
N
∑N

i=1
I
(
Counti=R ∧ ∀r, ŷi,r = yi

)
(6)

3.2. Overfitting metric

To effectively address the overfitting issues [35] of the proposed
CENN model, we have introduced a novel overfitting metric OF

(
λ, i, yi,

ŷi
)
that takes into account the training error Etr

(
yi, ŷi

)
, test error Ete

(
yi,

ŷi
)
, model complexity MC(λ, i, p), and data complexity DC(xi, μ, k).

This metric is defined as follows:

OF (λ, i, yi, ŷi) = (Etr(yi, ŷi) − Ete(yi, ŷi))2 +
DC(μ, i, k,)
MC(λ, i, p)

(7)

For the train error Etr(yi, ŷi) and the test error Ete(yi, ŷi), which are
calculated as follows:

Etr(yi, ŷi) =
1
m
∑m

i=1
L(yi, ŷi) (8)

Ete(yi, ŷi) =
1
n
∑n

i=1
L(yi, ŷi) (9)

where the m and n denotes the number of training samples and test
samples, respectively. The L

(
yi, ŷi

)
is the loss function that measures the

difference between the true label yiand the predicted value ŷi for the ith
sample.

For the model complexity MC(λ, i,p), it is defined as:

MC(λ, i, p) = λ

(
∑N

i=1
‖Wi ‖p

)

(10)

where the λ is the regularization parameter, which is used to control the
degree of penalty on model complexity. The N is the number of layers in
the proposed CENN model. The Wi represents the weight matrix of the

ithlayer, the ‖Wi‖p represents the norm of the weight matrix Wi, where
the p is the type of norm and can be the L1norm, L2norm, etc. [36]. Here,
we evaluate the performance and reproducibility through the L8 norm
computation, validated by an ablation study as detailed below:

L8(Wi) = ‖Wi ‖
8 =

(
∑r

j=1

∑c

k=1

⃒
⃒wjk

⃒
⃒8
)1

8

(11)

where the r and the c represent the number of rows and columns in the
matrix, respectively. TheWjkdenotes the element at row j and column k
of the weight matrix Wi. It illustrates the process of computing the
L8norm for a matrix Wi, which quantifies the complexity or high-order
differences in its elements.

For the data complexity DC(xi,μ), which is a metric that reflects the
complexity of a dataset, this metric combines factors such as noise N(xi,
μ), data dimensionalityd, data distributionD(i, k), and class imbalance
CI(i), it is defined as:

DC(xi, μ) = ln(1+ N(xi, μ))⋅D(i, k)2

1+
̅̅̅
d

√ ⋅CI(i) (12)

where ln(1 + N(xi,μ, i))represents the natural logarithm transformation
of noise N(xi, μ), which is typically used to mitigate the impact of noise.
This part accounts for the negative impact of noise on data complexity.
The square of data distribution complexity D(i, k)2 emphasizes the
distribution characteristics of the data. The 1+

̅̅̅
d

√
considers the influ-

ence of data dimensionality, with the
̅̅̅
d

√
part highlighting the impor-

tance of data dimensionality on data complexity. The class imbalance
CI(i) measures the balance situation of different classes in the data,
where a higher value indicates greater class imbalance and it is calcu-
lated: CI(i) = 1 − max(p(ci)), p(ci) denotes the proportion of instances
belonging to class ci.

3.3. Generalization and robustness metrics

To further enhance the reproducibility of the proposed CENNmodel,
we introduce two key metrics: the generalization metric [37] and the
robustness metric [38]. These metrics provide a comprehensive assess-
ment of the model’s performance by considering factors such as over-
fitting, model complexity, data complexity, and class imbalance.

For the generalization metric Ge
(
λ, μ,yi, ŷi

)
, which is a measure of

how well the proposed CENN model can generalize its performance to
unseen or new data. It is a composite metric that takes into account
various aspects of the model complexity MC(λ, i, p), data complexity
DC(xi, μ), overfitting metric OF

(
λ, i, yi, ŷi

)
, and the impact of class

imbalance term CI(i). The generalization metric Ge
(
λ, μ, yi, ŷi

)
is

defined as follows:

Ge(λ, μ, yi, ŷi) =
MC(λ, i, p)(1 − DC(xi, μ)) − OF (λ, p, yi, ŷi)

1+ CI(i)
(13)

The robustness metric Ro(λ, μ, yi, ŷi) assesses the resilience of the
CENN model by considering its performance (i.e., accuracy. Here, we
use the p to represent the predicted correct probability), susceptibility to
overfitting metric OF (λ, p, yi, ŷi), model complexity MC(λ, i, p), data
complexityDC(xi,μ), and generalization capabilitiesGe(λ, μ, yi, ŷi). The
robustness metric Ro(λ, μ, yi, ŷi)ensures that the model maintains high
performance under various conditions and is defined as follows:

Ro(λ, μ, yi, ŷi) =
p(1 − OF(λ, i, yi, ŷi))

MC(λ, i, p) + DC(xi, μ) + Ge(λ, μ, yi, ŷi)
(14)

3.4. Regularization and loss function adaptation

During the training process of the proposed CENN model, we
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continuously monitor the overfitting metric OF
(
λ, i, yi, ŷi

)
, robustness

metric Ro
(
λ, μ,yi, ŷi

)
, and generalization metric Ge

(
λ, μ, yi, ŷi

)
. If the

overfitting metricOF
(
λ,i, yi, ŷi

)
falls below a predefined threshold θ, we

adopt the cross-entropy loss function Lce
(
yi,k, ŷi,k

)
for training, defined

as follows:

Lce
(
yi,k, ŷi,k

)
= −

1
N
∑N

i=1

∑K

k=1
yi,k⋅log

(
ŷi,k
)

(15)

If the overfitting metric exceeds the threshold (OF (λ, i, yi, ŷi) ≥ θ),
we apply L2 regularization [36] across all dense layers of the proposed
model, that is, we need to regularize the sum of squares of all elements in
the weight matrix wij, which is equivalent to the square of the Frobenius
norm of the weight matrix. It is used to measure the size of a matrix to
prevent large weights and overfitting. Specifically, we introduce a reg-
ularization term L2

(
γ, wij

)
and an Improvement trade-off ratio ITR(λ, yi,

ŷi)into original loss function Lce
(
yi,k, ŷi,k

)
. The regularization term

L2
(
γ, wij

)
is defined as:

L2
(
γ,wij

)
=

γ
2
∑N

i=1

∑M

j=1
w2
ij (16)

The Improvement Trade-off Ratio ITR(λ, yi, ŷi)comprises the over-
fitting metric OF (λ, i, yi, ŷi), data complexity DC(xi, μ), Wasserstein
distance W(P,Q), and robustness metric Ro(λ, μ, yi, ŷi), and is defined
as:

ITR(λ, yi, ŷi) =
1 − OF (λ, i, yi, ŷi)

1+ DC(xi, μ)(1 − W(P,Q))
⋅Ro(λ, μ, yi, ŷi) (17)

We iteratively calculate the data complexity DC(xi,μ)and overfitting
metricOF (λ,i, yi, ŷi). IfOF (λ,i, yi, ŷi) ≥ DC(xi,μ), we adopt a combined
loss function Lc1

(
γ, wij, yi,k, ŷi,k

)
, which incorporates the cross-entropy

loss Lce
(
yi,k, ŷi,k

)
, regularization term L2

(
γ, wij

)
, and Improvement

Trade-off Ratio ITR(λ, yi, ŷi) across all dense layers, as detailed follows:

Lc1
(

γ, wij, yi,k, ŷi,k
)
= Lce

(
yi,k, ŷi,k

)
+ L2

(
γ,wij

)
+ ITR(λ, yi, ŷi)

= −
1
N
∑N

i=1

∑K

k=1
yi,k⋅log

(
ŷi,k
)
+

γ
2
∑N

i=1

∑M

j=1
w2
ij

+
1 − OF (λ, p, yi, ŷi)

1+ DC(xi, μ)(1 − W(P,Q))
⋅Ro(λ, μ, xi, yi, ŷi) (18)

Additionally, we also iteratively compute the model complexity
MC(λ, p)and Simpson diversity index S(i), a measure of diversity within
a dataset. If MC(λ, p) > S(i),we need to adopt a combined loss function

Lc2
(

γ, wij, yi,k, ŷi,k
)
to train the proposed CENNmodel, which consists of

crossentropy Lce
(
yi,k, ŷi,k

)
and L2

(
γ, wij

)
regularization, L2

(
γ, wij

)
reg-

ularization is used for all layers of the model. Specifically, this loss
function is defined as:

Lc2
(

γ, wij, yi,k, ŷi,k
)
= Lce

(
yi,k, ŷi,k

)
+ L2

(
γ, wij

)

= −
1
N
∑N

i=1

∑K

k=1

yi,k⋅log
(
ŷi,k
)
+

γ
2
∑N

i=1

∑M

j=1
w2
ij (19)

4. Datasets and feature extraction

The proposed CENN model’s performance is rigorously evaluated
across a diverse spectrum of benchmark datasets, including BodEMODB,
EMODB, CASIA, SAVEE, IEMOCAP, and ESD [27,39]. This thorough
assessment ensures a comprehensive and robust evaluation of the
model’s capabilities on a wide range of datasets, thereby affirming its
effectiveness.

The BodEMODB Tibetan speech emotion dataset, meticulously
recorded by our group at the Pattern Recognition Laboratory of Qinghai
Normal University, captures the emotional expressions of 10 speakers (5
male, 5 female) across 6 distinct emotional states using 50 Tibetan texts.
Each speaker contributes 300 sentences, resulting in a comprehensive
dataset of 3000 samples representing emotions such as anger (A), fear
(F), happiness (H), neutral (N), sadness (Sa), and surprise (Su).

The EMODB, a comprehensive German speech emotion dataset,
consists of 535 sentences recorded by 10 speakers. It encompasses seven
distinct emotional states: boredom (B), anger (A), fear (F), sadness (Sa),
disgust (D), happiness (H), and neutral (N).

The CASIA Chinese speech emotion dataset consists of 1200 utter-
ances contributed by 4 speakers, with each speaker providing 300 sen-
tences. It covers 6 emotional categories: anger (A), fear (F), happiness
(H), neutral (N), sadness (Sa), and surprise (Su).

The SAVEE emotion dataset includes 480 sentences from 4 speakers,
representing 7 emotional states: anger (A), disgust (D), fear (F), happi-
ness (H), sadness (Sa), surprise (Su), and neutrality (N). Notably, the
neutral (N) category comprises 120 samples, whereas each of the other
emotional states is represented by 60 samples.

The IEMOCAP dataset contains around 12 h of audio and video re-
cordings from 10 actors, featuring both scripted and spontaneous in-
teractions. It includes 1708 neutral samples, 1103 anger samples, 1084
sadness samples, and 590 happiness samples.

The ESD dataset features 350 parallel utterances from 10 Mandarin
and 10 English speakers, covering 5 emotional states: neutral (N),
happiness (H), anger (A), sadness (Sa), and surprise (Su). Each speaker
provides 35 utterances, making it ideal for research in speech synthesis,
voice conversion, and cross-lingual emotional speech generation.

To ensure transparency in our data preprocessing pipeline for the
mentioned datasets, we detail the feature extraction process for our
proposed CENN model. Our input comprises a comprehensive 107-
dimensional fusion feature set, encompassing crucial elements such as
Zero crossing rate (ZCR), MFCC, chroma, spectral contrast, first-order
MFCC deltas (ΔMFCC), spectral centroid, spectral rolloff, second-order
MFCC deltas (ΔΔMFCC), tonnetz, and spectral bandwidth for each
frame [6,10].

To capture feature variations effectively, we segment each speech
sample into frames using a 25 ms window and a 10 ms shifting step in
the CENN model. Recognizing feature fluctuations across emotional
states, we include a crucial preprocessing step: feature normalization.
This ensures standardization and comparability, eliminating magnitude
disparities and reducing prediction errors.

5. Experimental results

This section provides a comprehensive evaluation of performance
and reproducibility across multiple datasets, including EMODB, CASIA,
SAVEE, BodEMODB, IEMOCAP, and ESD. Datasets are randomly parti-
tioned, with 90% allocated to the training set and 10% to the test set. To
ensure robustness, each experiment is conducted ten times per dataset.
The results are analyzed by computing both the mean and standard
deviation.

5.1. The performance of the CENN model

Fig. 2 presents the training and testing accuracy curves for the CENN
model across six datasets. The model demonstrates strong convergence
and high accuracy on the EMODB, CASIA, BodEMODB, and ESD data-
sets, which can be attributed to the diverse and high-quality samples
that promote robust feature learning and generalization. The model’s
architecture, particularly the MHA module and residual module, ap-
pears well-suited to these datasets, enhancing emotion recognition and
optimizing gradient flow. Furthermore, the sequential capsule layers
contribute to capturing complex spatial hierarchies and intricate feature
relationships.
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Training accuracy consistently improves across all datasets, reflect-
ing effective learning processes. However, testing accuracy varies,
highlighting differences in the model’s generalization capabilities. On
the EMODB and BodEMODB datasets, training accuracy approaches
near-perfect levels, but testing accuracy, after an initial rise, either
plateaus or fluctuates, indicating potential overfitting. In contrast, on
the SAVEE, CASIA, and IEMOCAP datasets, a significant gap between
training and testing accuracy emerges after a certain number of epochs,
with testing accuracy plateauing around 0.7–0.75, further suggesting
overfitting. The ESD dataset, however, exhibits a different trend;
training accuracy nears 1.0, with testing accuracy closely following,
indicative of strong generalization and minimal overfitting.

Table 1 and Fig. 3 provides a comprehensive comparison of the
proposed CENN model across various datasets, emphasizing accuracy,
precision, recall, and F1-score. Remarkably, the CENN model exhibits
robust stability in all metrics on the ESD and BodEMODB datasets. This
stability is attributed to the model’s consistent and accurate predictions,
showcasing its adaptability and reliability. Notably, the ESD dataset
stands out as the one where the CENN model achieves its best
performance.

The CENN model showcases superior accuracy, precision, recall, and
F1-score on the EMODB dataset. Notably, it exhibits relatively lower
stability in this context, suggesting that the model’s performance on the
EMODB dataset might be sensitive to specific variations or instances
within the dataset.

Conversely, the CENNmodel faces challenges in maintaining optimal
performance on the IEMOCAP and SAVEE datasets, reflecting its lowest
performance among the analyzed datasets. This may be attributed to
inherent complexities and imbalances within these datasets, posing

difficulties for the model in generalization. These datasets exhibit higher
variability in recording conditions, speaker characteristics, emotional
expressions, and encompass a spectrum of acoustic variations, including
differences in speech rate, intonation, accent, and background noise.

The confusion matrices in Fig. 4 depict the performance of the pro-
posed CENN model across various datasets. The model excels in accu-
rately distinguishing between different emotion types within the
BodEMODB and ESD datasets. However, challenges arise in effectively
discerning emotional types on the SAVEE and IEMOCAP datasets.

The confusion matrices in Fig. 4 depict the performance of the pro-
posed CENN model across various datasets. The model excels in accu-
rately distinguishing between different emotion types within the
BodEMODB and ESD datasets. However, challenges arise in effectively
discerning emotional types on the SAVEE and IEMOCAP datasets.

On the EMODB dataset, the model accurately identifies Anger (A),
Boredom (B), Fear (F), and Sadness (Sa) but confuses Disgust (D) with
Happiness (H) and Neutral (N) with Sadness (Sa). The SAVEE dataset
shows significant confusion due to its small size and similar valence-
arousal values, while the CASIA dataset sees high accuracy for some
emotions with moderate difficulty in distinguishing others.

In datasets like IEMOCAP, imbalanced emotional instances lead to
considerable confusion, particularly for the emotion Happiness/H.
However, the model demonstrates excellent performance on the well-
balanced ESD dataset, indicating its robust capability for accurate
emotion recognition when data is sufficient.

The confusion matrices underscore the strengths and weaknesses of
the CENN model across different datasets, emphasizing its effectiveness
in well-balanced and sufficiently large datasets while identifying areas
for improvement in smaller or imbalanced datasets.

Fig. 2. Accuracy curves of the CENN model across six datasets: EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD datasets. The CENN model shows strong
performance but tends to overfit on certain datasets (EMODB, SAVEE, CASIA, IEMOCAP), while BodEMODB and ESD demonstrate better generalization.

Table 1
Results of the proposed CENN model on the different datasets: EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD.

Dataset Metric Avg ± Std Dataset Metric Avg ± Std Dataset Metric Avg ± Std

EMODB Accuracy 0.9352 ± 0.0190 CASIA Accuracy 0.8867 ± 0.0113 IEMOCAP Accuracy 0.7200 ± 0.0094
Precision 0.9061 ± 0.0172 Precision 0.8592 ± 0.0166 Precision 0.7297 ± 0.0045
Recall 0.8944 ± 0.0249 Recall 0.8383 ± 0.0130 Recall 0.6759 ± 0.0165
F1_score 0.9002 ± 0.0205 F1_score 0.8486 ± 0.0138 F1_score 0.7017 ± 0.0101

SAVEE Accuracy 0.8292 ± 0.0204 BodEmoDB Accuracy 0.9307 ± 0.0061 ESD Accuracy 0.9683 ± 0.0016
Precision 0.7962 ± 0.0138 Precision 0.8964 ± 0.0043 Precision 0.9601 ± 0.0056
Recall 0.7813 ± 0.0192 Recall 0.8917 ± 0.0050 Recall 0.9616 ± 0.0082
F1_score 0.7886 ± 0.0153 F1_score 0.8941 ± 0.0044 F1_score 0.9608 ± 0.0054
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Fig. 3. The comparisons of the proposed CENN model across diverse datasets: EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD. It achieves the highest
performance on the ESD, followed closely by EMODB, though with slightly lower stability. The model performs least favorably on the IEMOCAP, followed by SAVEE.

Fig. 4. The confusion matrices of the proposed CENN model across EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD datasets. The results highlight CENN’s
proficiency in accurately identifying various emotion types within the BodEMODB and ESD. However, challenges emerge in effectively distinguishing emotional
types within the SAVEE and IEMOCAP, likely due to the small size of SAVEE and the imbalanced distribution of emotional instances in IEMOCAP.
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The performance metrics—including accuracy, precision, recall, and
F1-score—of the proposed CENN model were meticulously assessed
across various datasets using different peer models: LSTM [40], GRU
[41], CNN [42], Transformer [43], Autoencoder [44], LSM [45], TCN
[46], CPAC [47], and TIM-Net [48], as depicted in Fig. 5. Each model’s
performance metrics are visually represented by distinct colored bars, as
delineated in the legend. Remarkably, the accuracy of the CENN model
consistently surpasses that of its peer models across all datasets, while its
recall and F1-score demonstrate consistently high values for most
datasets.

CENN consistently outperforms across various datasets. It excels on
EMODB, SAVEE, CASIA, and BodEMODB, with only a few close com-
petitors. On IEMOCAP, CENN maintains its lead, though the margin is
smaller. Finally, on ESD, CENN’s performance is unmatched, signifi-
cantly surpassing all other models.

Consistent top-ranking or near-top-ranking across all datasets un-
derscores CENN’s robust performance. While traditional models such as
LSTM [40] and GRU [41] exhibit competitive accuracy, they are not
generally outperformed by the advanced architecture of CENN.
Transformer-based models [43], renowned for capturing long-range
dependencies, also demonstrate commendable accuracy but fall short
of CENN’s capabilities, likely due to CENN’s enhanced feature extrac-
tion through capsules.

The superior performance of CENN across datasets like EMODB,
CASIA, and ESD underscores its adaptability and effectiveness across
varied scenarios. Even in datasets presenting challenges, such as the
small size of SAVEE and the imbalanced distribution of IEMOCAP, CENN
outperforms other models, reflecting its adept handling of complexities.

However, it is essential to note a discrepancy in precision, which
tends to be relatively low across most datasets. This trade-off between
recall and precision suggests that while CENN excels in correctly

identifying instances of interest, it may exhibit slightly more false pos-
itive predictions. Despite the lower precision observed on certain data-
sets like SAVEE and CASIA, CENN consistently outperforms all other
models in terms of F1-score, indicating a balanced performance between
precision and recall. The use of MHA contributes significantly to CENN’s
exceptional performance, enabling the model to effectively capture and
integrate diverse features and dependencies within input data. This
approach enhances the model’s ability to understand complex re-
lationships, thus surpassing peer methods across various datasets.

5.2. The reproducibility of the CENN model

To assess reproducibility, we conducted experiments with different
repetition counts (Count = 5, 6, 7, 8, 9, 10), examining instances
where predicted labels matched true labels at least five times out of ten,
each spanning 500 epochs. This analysis provides insights into the sta-
bility and consistency of CENN’s predictions under varying conditions,
serving as a foundation for evaluating the model’s robustness.

Table 2 shows the GLR and CLR of the proposed CENN model across
different datasets, including the EMODB, SAVEE, CASIA, BodEMODB,
IEMOCAP, and ESD. Among these, FLR and FCLR encapsulate results
from Count 5 to Count 9, while PLR and PCLR represent results from
Count 10.

The CENN demonstrates high GLR and CLR across all datasets with
initial repetition counts (Count 5). Both GLR and CLR decline with
increasing repetition, reflecting the model’s learning complexity. The
high PLR and PCLR (Count 10) values across datasets (e.g., EMODB:
88.89 %, 85.19 %; SAVEE: 70.83 %, 66.67 %; CASIA: 81.67 %, 74.17 %;
BodEMODB: 85.33 %, 82.00 %; IEMOCAP: 66.82 %, 51.89 %; ESD:
92.66 %, 91.44 %) indicate excellent reproducibility and performance,
underscoring the CENN model’s robustness and effectiveness in diverse

Fig. 5. Performance of the proposed CENN model across the EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD datasets. CENN consistently outperforms
peers in accuracy, recall, and F1-score, despite relatively low precision, indicating a precision-recall trade-off. This underscores CENN’s robustness, generalization,
and effectiveness.
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SER tasks.
Different datasets impact the model’s performance variability. For

instance, SAVEE and IEMOCAP show more significant declines, sug-
gesting these datasets may pose unique challenges or have greater
variability in data quality or characteristics. Despite some declines, the
overall high GLR and CLR values, particularly in datasets like EMODB,
CASIA, BodEMODB, and ESD, highlight the CENN model’s robustness
and its capacity to maintain reproducibility across different datasets.

Fig. 6 illustrates a comparative analysis of PLR and PCLR across
various models including CENN, LSTM, GRU, CNN, Transformer,
Autoencoder, TCN, TIM-Net, LSM, and CPAC. The CENN model, repre-
sented by the striped bars, consistently exhibits high PLR and PCLR
values across all datasets compared to other models. This indicates its
high reliability in accurately reproducing learning results. The consis-
tently high PLR and PCLR values across different datasets suggest that
CENN generalizes well and is robust against varied data distributions
and characteristics. Its architecture incorporates mechanisms to capture
intricate patterns and ensure stable learning, enhancing reproducibility.
Additionally, CENN’s design effectively handles noise and variability,
making it more reliable across diverse datasets.

GRU shows better reproducibility than LSTM but still falls short of
CENN, especially on CASIA and SAVEE. CNN performs well on BodE-
MODB and ESD but are weaker on SAVEE. Transformer models are
strong on EMODB and ESD but inconsistent overall. Autoencoders
perform adequately but don’t match CENN’s reproducibility. TCNs have
mixed results, excelling on some datasets but underperforming on
others. TIM-Net shows promise in specific cases but lacks CENN’s
robustness. CPAC is less consistent than CENN, while LSM’s reproduc-
ibility varies significantly across datasets.

5.3. Comparison with previous research findings

Table 3 presents a comparative analysis of emotion recognition
models across six benchmark datasets, highlighting the superior per-
formance of the proposed CENN model. The CENN model consistently
outperforms other models on most datasets, except for SAVEE and
CASIA. Specifically, CENN achieves the highest accuracy on EMODB
(96.30 %), IEMOCAP (72.88 %), BodEMODB (93.07 %), and ESD (96.83
%). TIM-Net [48], also introduced in 2023, demonstrates strong per-
formance on EMODB (95.70 %), SAVEE (86.07 %), and CASIA (94.67
%). The GM-TCN model performs well on EMODB (91.39 %) and CASIA
(90.17 %) [51], while CPAC achieves high accuracy on EMODB (94.95
%) and CASIA (92.75%) [47]. Althoughmodels like TSP+INCA [49], 3D
CNN [52], and DT-SVM [53] perform decently, they generally fall short
of the accuracy achieved by the proposed CENN model.

The top-performing models for the EMODB dataset are CENN (96.30
%), TIM-Net (95.70 %), and CPAC (94.95 %), indicating their effec-
tiveness in handling its features. On the SAVEE dataset, TIM-Net (86.07
%) and CPAC (83.69 %) outperform CENN (85.42 %), suggesting these
models better address its specific challenges. Similarly, for the CASIA
dataset, TIM-Net (94.67 %) and CPAC (92.75 %) surpass CENN (90.00
%). CENN leads the IEMOCAP dataset with 72.88 %, closely followed by
TIM-Net at 72.50 %, showcasing their advanced capabilities. On the
BodEMODB dataset, CENN (93.07 %) and Transformer (85.00 %) ach-
ieve the highest accuracies, highlighting their strength. For the ESD
dataset, CENN (96.83 %) and Transformer (93.80 %) again lead,
demonstrating their robustness and adaptability.

The newer models, such as CENN, TIM-Net, and CPAC, leverage
advanced neural network architectures, contributing to their superior
performance. For example, the capsule network in CENN effectively

Table 2
General learning reproducibility (GLR) and Correct learning reproducibility (CLR) of the proposed CENN model, utilizing 10 times experimentation across diverse
datasets. As reproducibility iterations increase, both GLR and CLR gradually decline, primarily due to the heightened learning difficulty within the CENN model.

Dataset Reproducibility Count_5 Count_6 Count_7 Count_8 Count_9 Count_10

EMODB GLR 1.0000 0.9815 0.9630 0.9259 0.9259 0.8889
CLR 0.9074 0.9074 0.9074 0.8704 0.8704 0.8519

SAVEE GLR 0.9792 0.9583 0.8750 0.8542 0.7083 0.7083
CLR 0.7292 0.7292 0.7083 0.7083 0.6667 0.6667

CASIA GLR 1.0000 1.0000 0.9667 0.9000 0.8583 0.8167
CLR 0.8333 0.8333 0.8333 0.7917 0.7750 0.7417

BodEMODB GLR 0.9967 0.9833 0.9533 0.9367 0.9133 0.8533
CLR 0.9033 0.9033 0.8933 0.8900 0.8767 0.8200

IEMOCAP GLR 0.9866 0.9465 0.8976 0.8241 0.7439 0.6682
CLR 0.6882 0.6637 0.6370 0.6102 0.5657 0.5189

ESD GLR 0.9994 0.9923 0.9786 0.9649 0.9474 0.9266
CLR 0.9673 0.9540 0.9457 0.9280 0.9159 0.9144

Fig. 6. The comparisons of Perfect learning reproducibility (PLR) and Perfect correct learning reproducibility (PCLR) for the proposed CENN model in relation to its
peer models across six benchmark datasets: EMODB, SAVEE, CASIA, BodEMODB, IEMOCAP, and ESD. The consistently higher PCLR achieved by CENN, when
contrasted with its peers, serves to accentuate its superior correctness in terms of reproducibility.
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capture spatial hierarchies in data. Additionally, certain datasets have
unique features that align better with specific model architectures. For
instance, SAVEE and CASIA may have characteristics that TIM-Net and
CPAC exploit more effectively than CENN.

The proposed CENN model demonstrates outstanding performance
across most datasets, highlighting the benefits of capsule network in SER
tasks. However, TIM-Net and CPAC also show strong results, particularly
on datasets where CENN does not excel. This indicates that model per-
formance can be highly dependent on the specific characteristics of the
dataset.

6. Discussion

The CENN represents a novel and effective approach to SER,
leveraging a hybrid architecture that combines state-of-the-art deep
learning techniques. The model’s strengths are evident in its robust
performance, enhanced by innovative metrics designed to address
common challenges in deep learning, such as overfitting and general-
ization. The CENN model’s reproducibility framework further solidifies
its contribution to the field, offering a reliable tool for SER research and
applications.

A key strength of the CENN model lies in its ability to maintain high
performance across diverse datasets, demonstrating its generalization
capabilities. The reproducibility-focused approach adopted in this study
has also contributed to the reliability of the model’s results, making it a
robust tool for SER. Moreover, the inclusion of a detailed analysis of
model complexity and data complexity has highlighted the importance
of balancing these factors to prevent overfitting and enhance
generalization.

Despite these advancements, the CENN model is not without limi-
tations. The computational complexity associated with its architecture
presents challenges for real-time applications, particularly in environ-
ments with limited processing power. Additionally, while the model has
shown strong performance on benchmark datasets, its applicability to
more diverse and noisy real-world datasets requires further exploration.
The interpretability of the model’s decisions remains another area for
improvement, as understanding how the model arrives at its predictions
is crucial for building trust and usability in practical applications.

7. Conclusion

The development and evaluation of the CENN mark a significant
advancement in the field of SER. The integration of cutting-edge com-
ponents, such as MHA, ResNet module, and Capsule module, has
demonstrated substantial effectiveness in capturing both global and
local patterns within speech data. This has led to notable improvements
in the accuracy and robustness of emotion recognition models.

Our comprehensive evaluation across six benchmark data-
sets—EMODB, CASIA, SAVEE, BodEMODB, IEMOCAP, and

ESD—consistently shows that the CENNmodel outperforms existing SER
models in terms of both accuracy and reproducibility. The introduction
of novel metrics, including overfitting, generalization, and robustness
metrics, has provided a multidimensional framework for assessing the
model’s performance, ensuring its applicability to real-world scenarios.

Future research should focus on optimizing the CENNmodel for real-
time applications, enhancing its computational efficiency without
compromising performance. Expanding the model’s capabilities to
handle more diverse, multimodal datasets will also be critical in
broadening its applicability. Moreover, improving the interpretability of
the CENNmodel’s decision-making process will be essential for fostering
trust and facilitating its adoption in practical, high-stakes settings.

Beyond the domain of SER, the versatile architecture of the CENN
model holds significant promise for other complex pattern recognition
tasks, such as medical diagnostics and behavioral analysis. By address-
ing these avenues for further improvement, the CENN model is well-
positioned to make substantial contributions not only to SER but also
to a wide range of fields that require advanced and reliable data analysis.
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Table 3
The accuracy comparison between the proposed Capsule-enhanced neural network (CENN) model and previous models from previous research across benchmark
datasets. Notably, the CENN model consistently outperforms previous research findings on most datasets, except for the SAVEE and CASIA datasets.

Model Year EMODB Model Year SAVEE Model Year CASIA

TSP+INCA [49] 2021 90.09 3D CNN [52] 2019 81.05 DT-SVM [53] 2019 85.08
QCNN [50] 2021 88.78 TSP+INCA [49] 2021 83.38 TLFMRF [54] 2020 85.83
GM-TCN [51] 2022 91.39 CPAC [47] 2022 83.69 GM-TCN [51] 2022 90.17
CPAC [47] 2022 94.95 GM-TCN [51] 2022 83.88 CPAC [47] 2022 92.75
TIM-Net [48] 2023 95.70 TIM-Net [48] 2023 86.07 TIM-Net [48] 2023 94.67
CENN (Ours) 2024 96.30 CENN (Ours) 2024 85.42 CENN (Ours) 2024 90.00
Model Year BodEMODB Model Year IEMOCAP Model Year ESD
LSTM 2023 82.33 MHA+DRN [55] 2019 67.40 LSTM 2023 93.61
GRU 2023 77.17 CNN+BiGRU [56] 2020 71.72 GRU 2023 89.04
CNN 2023 74.17 QCNN [50] 2021 70.46 CNN 2023 88.74
Transformer 2023 85.00 Light-SERNet [57] 2022 70.76 Transformer 2023 93.80
TCN 2023 78.17 TIM-Net [48] 2023 72.50 TCN 2023 92.76
CENN 2024 93.07 CENN (Ours) 2024 72.88 CENN 2024 96.83
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